Maximum Likelihood Estimation of Factor Analysis Using the Ecme Algorithm with Complete and Incomplete Data

نویسندگان

  • Chuanhai Liu
  • Donald B. Rubin
  • CHUANHAI LIU
  • DONALD B. RUBIN
چکیده

Factor analysis is a standard tool in educational testing contexts, which can be fit using the EM algorithm (Dempster, Laird and Rubin (1977)). An extension of EM, called the ECME algorithm (Liu and Rubin (1994)), can be used to obtain ML estimates more efficiently in factor analysis models. ECME has an E-step, identical to the E-step of EM, but instead of EM’s M-step, it has a sequence of CM (conditional maximization) steps, each of which maximizes either the constrained expected complete-data log-likelihood, as with the ECM algorithm (Meng and Rubin (1993)), or the constrained actual log-likelihood. For factor analysis, we use two CM steps: the first maximizes the expected complete-data log-likelihood over the factor loadings given fixed uniquenesses, and the second maximizes the actual likelihood over the uniquenesses given fixed factor loadings. We also describe EM and ECME for ML estimation of factor analysis from incomplete data, which arise in applications of factor analysis in educational testing contexts. ECME shares with EM its monotone increase in likelihood and stable convergence to an ML estimate, but converges more quickly than EM. This more rapid convergence not only can shorten CPU time, but at least as important, it allows for a substantially easier assessment of convergence, as shown by examples. We believe that the application of ECME to factor analysis illustrates the role that extended EM-type algorithms, such as the even more general AECM algorithm (Meng and van Dyk (1997)) and the PX-EM algorithm (Liu, Rubin and Wu (1997)), can play in fitting complex models that can arise in educational testing contexts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Factor Analysis Using the Multivariate t-Distribution

Factor analysis is a standard method for multivariate analysis. The sampling model in the most popular factor analysis is Gaussian and has thus often been criticized for its lack of robustness. A simple robust extension of the Gaussian factor analysis model is obtained by replacing the multivariate Gaussian distribution with a multivariate t-distribution. We develop computational methods for bo...

متن کامل

Windowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation

During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...

متن کامل

Statistica Sinica 5(1995), 19-39 ML ESTIMATION OF THE t DISTRIBUTION USING EM AND ITS EXTENSIONS, ECM AND ECME

The multivariate t distribution has many potential applications in applied statistics. Current computational advances will make it routinely available in practice in the near future. Here we focus on maximum likelihood estimation of the parameters of the multivariate t, with known and unknown degrees of freedom, with and without missing data, and with and without covariates. We describe EM, ECM...

متن کامل

Bearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm

Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...

متن کامل

Windowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation

During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003